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Real Life Examples
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On The Menu

® |ntroduction

® Social Recommendation Models
® Social graph
® Social ensemble
® Social distrust

® \VVebsite recommendation

® Multi-centered Gaussian Location Recommendation
Model

® Conclusion
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Basic Approaches

® Content-based Filtering
® Recommend items based on key-words

® More appropriate for information retrieval

® Collaborative Filtering (CF)
® | ook at users with similar rating styles

® |ook at similar items for each item

Underling assumption: personal tastes are correlated--
Active users will prefer those items which other
similar users prefer!

&

Recent Developments in Social and Location Recommendations, Irwin King 1,[’\:}‘;
CCF ADL 39 on Social Networks and Mining, August 3-5, 2013, Beijing, China w



Framework

o Items .
I 2 y Im
U|
ur| | | 3 4 2 5 3| 4
Users

Uj 3 4 rij 3 4 3 4 4

Un| | 31512 4 | | 3

® T[he tasks

® Find the unknown rating!

® Which item should be recommended?
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Social Recommender Systems

Introduction
Collaborative Filtering
Trust-aware Recommender Systems

Social-based Recommender Systems

Recent Developments in Social and Location Recommendations, Irwin King
CCFADL 39 on Social Networks and Mining, August 3-5, 201 3, Beijing, China



Collaborative Filtering

® Memory-based (Neighborhood-based)
® User-based

® |tem-based

® Model-based
® (lustering Methods
® Bayesian Methods
® Matrix Factorization

® etcC.
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User-User Similarity

Q2: How to

% % select neighbors?
B ')
A target

Ql: How to measure %
the similarity?

40 ()
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User-based Collaborative Filtering

ltems
uj
u| | | 3 4 2 5 314
Users Y3
U4 3 4 3|4 3|4 4
us
U¢ |O 3|52 4 | | 3
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User-based Collaborative Filtering

ltems
uj
u| | | 3 4 2 5 314
Users Y3
U4 3 4 3| 4 3|4 4
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User-based Collaborative Filtering

ltems
Ui
uzff I |3 4 2 5 3| 4
Users 3
U4 3 4 3| 4 3|4 4
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Ue| | 3152 4 | | 3
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User-based Collaborative Filtering

Users

ltems
Uj|
(uz 2 5 3|4
us
U4 3|4 3|4 4
us
Ug 2 4 | | 3
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User-based Collaborative Filtering

ltems
uj
uz| | 4 2 5 314
Users Y3
U4 4 3|4 3|4 4
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ug | | 3(5]2 4 (| 3
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User-based Collaborative Filtering

® Predict the ratings of active users based on the ratings
of similar users found in the user-item matrix

® Pearson correlation coefficient

)
~—~
<

~
~—~

|
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Nearest Neighbor Approaches

[Sarwar, 003]

Representation of input data Neighborhood formation Recommendation generation

Figure 1: Three main parts of a Recommender System.

® |dentify highly similar users to the active one
® All with a measure greater than a threshold
® Best K ones

D w(a,i)(rig — Ti)

Tq

® Prediction T7Taj

'SF wla, ) W
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Collaborative Filtering

® Memory-based Method (Simple)

User-based Method [Xue et al., SIGIR ’05]
ltem-based [Deshpande et al., TOIS ’04]

® Model-based (Robust)

Clustering Methods [Hkors et al, CIMCA "99]
Bayesian Methods [Chien et al.,, IWAIS "99]
Aspect Method [Hofmann, SIFIR 03]

Matrix Factorization [Sarwar et al., WWW ’01]
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Collaborative Filtering

® Memory-based (Neighborhood-based)
® User-based

® |tem-based

® Model-based
® (lustering Methods
® Bayesian Methods
® Matrix Factorization

® etcC.
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ltem-ltem Similarity

® Search for similarities among items

® [tem-ltem similarity is more stable than user-user
similarity

Recent Developments in Social and Location Recommendations, Irwin King
CCFADL 39 on Social Networks and Mining, August 3-5, 201 3, Beijing, China



Correlation-based Methods

[Sarwar, 2001]

® Same as in user-user similarity but on item vectors

® Pearson correlation coefficient

® |Look for users who rated both items

P Zu(ruj — fj)(f’“ui — T3)
Ve = )2 (P — 7)?

T ) i i

uj

® u:users rated bothitems 57T
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Correlation-based Method

[Sarwar, 2001]

® C(Calculate item similarity, then determine its k-most
similar items

- 2 3 <1 | K1 nt n

2 | A 1/ |

Il W00 174D 1 (AR | -1 i _ m-1 m
A VA % R |R RN - R
j : /-’/-"‘d_’ ‘S AAAL

R R R.- R

m-1 |
| } ned sum

i i e i i

4th o }

Ranking of the items similar to the  Jj-th item

® Predict rating for a given user-item pair as a weighted
sum over similar items that he ratec

2. SijTaj

DS
j o i
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Traditional Methods

e Memory-based Methods (Neighborhood-based Method)

e® Pearson Correlation Coefficient

e User-based, Item-based

e Etc Vi Vv, Viov VsV

u, 5 2 3
e Model-based Method u, | 4 ’ 1

U, 2 2

e Matrix Factorizations u, | 5 3
Us = 9 3

e Etc.
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User-based Method

ltems
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Collaborative Filtering

® Memory-based (Neighborhood-based)
® User-based

® |tem-based

® Model-based
® (lustering Methods
® Bayesian Methods
® Matrix Factorization

® etc...
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Matrix Factorization

ol Bkt |k oG | B |k |3 | 3 | T
u, | 5 | 2 3 4 u, | 5| 2 |25 3 |148| 4 |22 |48
u, 4 | 3 5 u, | 4 | 3 (24|129| 5 (41(26|4.7
u; 4 2 2 | 4 u; | 4 |1.7| 2 |32|39(30| 2 | 4
u, u, |48 (21 (2.7/126(4.7(38(24 |49
us | 5 | 1 | 2 4 | 3 Us | 5 |1 | 2 |34( 4 | 3 |15|46
ug 4 3 2 4 3 | Us | 4 | 3 (29| 2| 4 |34 3 | 5
1.551.22 0.37 0.81 0.62 —0.01] C1.00 —0.05 —0.24 0.26 1.28 0.54 —0.31 0.52
0.36 0.91 1.21 0.39 1.10 0.25 0.19 —0.86 —0.72 0.05 0.68 0.02 —0.61 0.70
0.59 0.20 0.14 0.83 0.27 1.51 V 0.49 0.09 —0.05 —0.620.12 0.08 0.02 1.60
0.39 1.33 —0.43 0.70 —0.90 0.68 —-0.40 0.70 0.27 —-0.270.99 0.44 0.39 0.74
11.050.11 0.17 1.18 1.81 0.40 | - 1.49 —1.00 0.06 0.05 0.230.01 —0.36 0.80_
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Matrix Factorization

® Matrix Factorization in Collaborative Filtering

® TJo fit the product of two (low rank) matrices to the
observed rating matrix

® To find two latent user and item feature matrices

® TJo use the fitted matrix to predict the unobserved ratings

%
z/tll

\
U

User-specific latent
feature vector

/
Vll e o 0 Vln\

\vkl an/

\Item-specific latent

feature column vector
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Matrix Factorization

® Optimization Problem

Given a m x n rating matrix R, to find two matrices
= Rlem andv = Ran’

R~U"YV,

where [ < min(m,n),is the number of factors
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Matrix Factorization

® Models
® SVD-like Algorithm
® Regularized Matrix Factorization (RMF)
® Probabilistic Matrix Factorization (PMF)
® Non-negative Matrix Factorization (NMF)
o
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SVD-like Algorithm

® Minimizing
1 Ty (12
SIR-UTV[%,

® For collaborative filtering

1 ™" T
" - — T 2
min 5 » » Iij(Rij —U; Vj)
U,V 2 4

=1 19=1

where [;; is the indicator function that is equal to | if
user uj rated item v; and equal to 0 otherwise.
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Regularized Matrix Factorization

® Minimize the loss based on the observed ratings with
regularization terms to avoid over-fitting problem

1 i T 2 | A1 2 A2 2
(5‘1/ 55:5; ij — U; V;) +{7HUHFA+ ?HVHFJ

Regularization terms

where A1, A2 > 0.

® The problem can be solved by simple gradient descent
algorithm.
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Regularized Matrix Factorization
® Algorithm for RMF

® Not convex & local optimal
® Gradient-decent algorithm

® Gradient computation with randomly initialized U and V

oL ~
a_:ﬂ“uil_ Z (yij_yij)vjl
U jli, j)esS
oL ~
5 :ﬂ“vil_ Z (yij_yij)ujl
Vi Jjli,j)es
® Update U and V alternatively
L (D — () OL
il
(t+1) _ (1) oL
Vi =V T
oV,
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Probabilistic Matrix Factorization

o PMF
® Define a conditional distribution over the observed ratings
as:

O',, OI'[.
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Probabilistic Matrix Factorization

o PMF

® Assume zero-mean spherical Gaussian priors on user and
item feature:

Recent Developments in Social and Location Recommendations, Irwin King H’\:;Jg}
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Probabilistic Matrix Factorization

o PMF
® Bayesian inference
o, O
U,VIR,0%,00,0% R|U,V,og)p(Ulot)p(V|oy
G U p( |R,0R,00,0v) X p(R|U,V,0r)p(Uloy)p(V]ov)
: m R
I
HH[ ( Ri;|9(Ui' Vj), 0 )}
=1 17=1
; m n
R 2 2
) x ][N0, 05T) x [[ N(V;]0, 07 1).
i=l,....m S 4 R
B . n o J=
O g
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RMF and PMF

® PMF is the probabilistic interpretation of RMF

® PMF and RMF have the same optimization objective
function
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Non-negative Matrix Factorization

e NMF

® Non-negative constraints on all entries of matrices U andV

Non-negativity
Constraint

(-10)*(-10)=100

Recent Developments in Social and Location Recommendations, Irwin King X
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Non-negative Matrix Factorization

e NMF

® Given an observed matrix Y, to find two non-negative
matrices U andV

® J[wo types of loss functions

® Squared error function

T 2
> (B ~UTW)

ij
® Divergence
L R;. -
D(R||U'V) = Z (Rij log U;[{/j - Ri; + U Vj)

i
® Solving by multiplicative updating rules
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Social Recommendation Using
Probabilistic Matrix Factorization

[Ma et al., CIKM2008]
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Challenges

® Traditional recommender systems ignore the social
connections between users

Recommendations
from friends

Recent Developments in Social and Location Recommendations, Irwin King 19'53
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Motivations

® “Yes, there is a correlation - from social networks to
personal behavior on the web”

Parag Singla and Matthew Richardson (VWVWVV’08)

® Analyze the who talks to whom social network over 10
million people with their related search results

® People who chat with each other are more likely to share
the same or similar interests

® TJo improve the recommendation accuracy and solve the

data sparsity problem, users’ social network should be
taken into consideration

Recent Developments in Social and Location Recommendations, Irwin King
CCFADL 39 on Social Networks and Mining, August 3-5, 201 3, Beijing, China



Problem Definition

Vi Vs Vi vV, Ve Ve
u, > 2 3
u, | 4 3 4
U, 2 2
u, | 5 3
U s 5 3
Social Trust Graph User-Item Rating Matrix

Recent Developments in Social and Location Recommendations, Irwin King
CCFADL 39 on Social Networks and Mining, August 3-5, 201 3, Beijing, China

.\)5

———

Y

N
~ <
. 2



User-ltem Matrix Factorization

O al'(.
Vi YV, V3 Vg Vs Vg
U, ST 3
u, | 4 3 4
U 2 2
-
u, | S 3
U D 5 S
Oy
X m n - _ 11{
' T y P AL r[ y 2 tJ
p(RIU,V,o%) =TT TI [\ (Rislo(U, xj).aﬁ)]
i=1j=1
pUled)=][N(U:0,05T) p(Vet) =[] N (V;|0,0% 1)
g=1 1=1

R. Salakhutdinov and A. Mnih (NIPS'08)
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I >y 2 3
|

O
i, | 4 3 4
. 2 2
;| 5 3
U 5 3 3

j=1,...,n

Op Oc
SoRec
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SoRec
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Complexity Analysis

® For the Objective Function O(prl + /)cl)—

oL L -

o0 the complexity is O(prl + pcl)
oL
oV
OL
57

® For

® For the complexity is O(prl)

® [For

the complexity is O(pcl)

® |n general, the complexity of our method is linear with the
observations in these two matrices
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Disadvantages of SoRec

® | ack of interpretability Ty T P
® Does not reflect the real-
world recommendation @ »
=" s m
process o [ K= Tiain
o 3 3
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Learning to Recommend with Social Trust Ensemble

[Ma et al., SIGIR2009]
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| st Motivation

e Users have their own characteristics, and they have
different tastes on different items, such as movies,
books, music, articles, food, etc.
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2"d Motivation

e Users can be easily influenced by the friends they
trust, and prefer their friends’ recommendations.

Where to have

dinner? / %\

Very Good
“ - | N

Ask
\% Chea Delicious
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U

ser-ltem Matrix Factorization
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[R. Salakhutdinoy, et al., NIPS2008]
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Recommendations by Trusted Friends
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Recommendation with Social Trust Ensemble
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Recommendation with Social Trust Ensemble
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Complexity

® |n general, the complexity of this method is linear with
the observations the user-item matrix
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Epinions Dataset

® 51,670 users who rated 83,509 items with totally
631,064 ratings

® Rating Density 0.015%

® The total number of issued trust statements is 511,799
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Metrics

® Mean Absolute Error and Root Mean Square Error
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Comparisons

Table 3: Performance Comparisons (A Smaller MAE or RMSE Value Means a Better Performance)

e ainie Dt | Maties Dimensianz}lity =5 _ Dimensiona_lity =0 _
- "l Trust | PMF | SoRec | RSTE Trust | PMF | SoRec | RSTE
90% MAE 0.9054 | 0.8676 | 0.8484 | 0.8377 || 0.9039 | 0.8651 | 0.8426 | 0.8367
: RMSE 1.1959 | 1.1575 | 1.1418 | 1.1109 |{ 1.1917 | 1.1544 | 1.1365 | 1.1094
R0% I\"IA_E 0.9221 | 0.8951 | 0.8654 | 0.8594 (| 0.9215 | 0.8886 | 0.8605 | 0.8537
- RMSE 1.2140 | 1.1826 | 1.1517 | 1.1346 || 1.2132 | 1.1760 | 1.1586 | 1.1256

PMF --- R. Salakhutdinov and A. Mnih (NIPS 2008)

SoRec --- H. Ma, H.Yang, M. R. Lyu and I. King (CIKM 2008)

Trust, RSTE --- H. Ma, I. King and M. R. Lyu (SIGIR 2009)
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Comparisons

Table III: Performance Comparisons (A Smaller MAE or RMSE Value
Means a Better Performance)

’I‘rainingMe tric Dimensionality = 5
Data UserMeanltemMean NMFEF | PMF | Trust | SoRec | RSTE
00% MAE | 0.9134 | 0.9768 | 0.8738 | 0.8676 | 0.9054 | 0.8442 | 0.8377
RMSE| 1.1688 | 1.2375 | 1.1649 | 1.1575 | 1.1959 | 1.1333 | 1.1109
0% MAE | 0.9285 | 0.9913 | 0.8975 | 0.8951 | 0.9221 | 0.8638 | 0.8594
RMSE| 1.1817 | 1.2584 | 1.1861 | 1.1826 | 1.2140 | 1.1530 | 1.1346
TrainingMetricc Dimensionality = 10
Data UserMeanltemMean NMF | PMF | Trust | SoRec | RSTE
00% MAE | 0.9134 | 0.9768 | 0.8712 | 0.8651 | 0.9039 | 0.8404 | 0.8367
RMSE| 1.1688 | 1.2375 | 1.1621 | 1.1544 | 1.1917 | 1.1293 | 1.1094
0% MAE | 0.9285 | 0.9913 | 0.8951 | 0.8886 | 0.9215 | 0.8580 | 0.8537
RMSE| 1.1817 | 1.2584 | 1.1832 | 1.1760 | 1.2132 | 1.1492 | 1.1256

NMF --- D. D. Lee and H. S. Seung (Nature 1999)
PMF --- R. Salakhutdinov and A. Mnih (NIPS 2008)

SoRec --- H. Ma, H.Yang, M. R. Lyu and |. King (CIKM 2008)
Trust, RSTE --- H. Ma, I. King and M. R. Lyu (SIGIR 2009)
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Performance on Different Users

® Group all the users based on the number of observed
ratings in the training data

® 6 classes:“| — 107,11 — 207,21 — 40”,“4] — 80”,“81 —
I60”,“> I60”,

, , , : s Wz
Recent Developments in Social and Location Recommendations, Irwin King f‘ﬁ-ﬂ}
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Performance on Different Users

2x 10'4

b
2

Number of Test Ratings
-
P b

1-10 11-20 21-40 41-80 81-160 >160
Number of Observed Ratings

(a) Distribution of Testing Data (90% as
Training Data)

Dimensionality = 10 Dimensionality = 10

X 1.35 Y e )
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w
e 7
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Impact of Parameter Alpha

80% as Training Data

90% as Training Data
09‘4 v v v T T T ' 24 T v T T T L T

0.92} { 12

O'820 01 02 03 04 05 06 07 08 09 1 1'10 01 02 03 04 05 06 07 08 09 1
Values of a Values of o
80% as Training Data 80% as Training Data
0.94 \80—mmMm

MAE

0

8 01 020304050607 0809 1 1% 0710203020506070809 1
Values of i Values of

Impact of Parameter o (Dimensionality = 10)
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MAE and RMSE Changes with Iterations

Dimensionality = 10

Dimensionality = 10

1.3ry - - ' 1.5 , — - . - ;
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i —~—RSTE=07[] 145 o RSTE o =071
| ——RSTEa=1 1.4f ~—RSTE o=
h 1.35} |
Z 13}
125 ] =
1.2}
1.15}
08— i — :
"0 50 100 150 200 250 300 350 400 "0 50 100 150 200 250 300 350 400
lterations lterations
90% as Training Data
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Further Discussion of SoRec

® Improving Recommender Systems Using Social Tags

O, Oy O O O, Oy

a g m : k=1,..9 ; , = m

Ta 078 OF Or

MovielLens Dataset
/1,567 users, 10,68 movies,
10,000,054 ratings, 95,580 tags
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Further Discussion of SoRec

e MAE

Table V: MAE comparison with other approaches on MovieLens dataset
(A smaller MAE value means a better performance)

Methods 80% Training | 50% Training | 30% Training | 10% Training
User Mean 0.7686 0.7710 0.7742 0.8234
[tem Mean 0.7379 0.7389 0.7399 0.7484

SVD 0.6390 0.6547 0.6707 0.7448

=D PMF 0.6325 0.6542 0.6698 0.7430
SoRecUser 0.6209 0.6419 0.6607 0.7040
SoRecltem 0.6199 0.6407 0.6395 0.7026

SVD 0.6386 0.6534 0.6693 0.7431

10D PMF 0.6312 0.6530 0.6683 0.7417
SoRecUser 0.6197 0.6408 0.6595 0.7028
SoRecltem 0.6187 0.6395 0.6584 0.7016

Recent Developments in Social and Location Recommendations, Irwin King
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Further Discussion of SoRec

e RMSE

Table VI: RMSE comparison with other approaches on MovieLens
dataset (A smaller RMSE value means a better performance)

Methods 80% Training | 50% Training | 30% Training | 10% Training
User Mean 0.9779 0.9816 0.9869 158§
[tem Mean 0.9440 0.9463 0.9505 0.9851

SVD 0.8327 0.8524 0.8743 0.9892

D PMF 0.8310 0.8582 0.8758 0.9698
SoRecUser 0.8121 0.8384 0.8604 0.9042
SoRecltem 0.8112 0.8370 0.8591 0.9033

SVD 0.8312 0.8509 0.8728 0.9878

10D PMF 0.8295 0.8569 0.8743 0.9681
SoRecUser 0.8110 0.8372 0.8593 0.9034
SoRecltem 0.8097 0.8359 0.8578 0.9019
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Further Discussion of RSTE

® Relationship with Neighborhood-based methods

Oy oy e The trusted friends are actually the
explicit neighbors

Q| 1@
e We can easily apply this method to

= ™ include implicit neighbors
i=1....m keT(@) . L.
j=L...n =i T() e Using PCC to calculate similar users
for every user
O-\
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Recommend with Social Distrust

[Ma et al., RecSys2009]
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Trust vs. Social

® [rust-aware ® Social-based

® Trust network: unilateral ® Social friend network:
relations mutual relations

® TJrust relations can be ® Friends are very diverse,
treated as “similar” and may have different
relations tastes

® [ew datasets available on ® Many Web sites have
the Web social network

implementation

Recent Developments in Social and Location Recommendations, Irwin King 1’[\:}‘?
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Distrust

® Users’ distrust relations can be interpreted as the
“dissimilar” relations

® On the web, user U, distrusts user Uy indicates that user U,
disagrees with most of the opinions issued by user U..

Recent Developments in Social and Location Recommendations, Irwin King
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Distrust
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Trust

® Users’ trust relations can be interpreted as the “similar”
relations

® On the web, user U, trusts user U; indicates that user U,
agrees with most of the opinions issued by user U..
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Trust
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Web Site Recommendation

[Ma et al., SIGIR 201 1]
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Traditional Search Paradigm

oiNg
Web

RELATED SEARCHES

Special Inspector
General for Iraq
Reconstruction

SIGIR Reports
SIGIR Poster
SIGIR List
SIGIR 2011
SIGIR 10
SIGIR 2010
Registration
SIGIR 2009
Proceedings

SEARCH HISTORY

Search more to see your
history

See all
Clear all - Tumn off

4 NARROW BY DATE
All results
Past 24 hours
Past week
Past month

Web Images Videos Shopping News Maps More | MSN Hotmail

sigir E

Web News Images Morev

ALL RESULTS

Welcome to SIGIR | Home
An Iraqi fisherman pushes his boat off-shore to depart on his daily fishing trip. View the

Report.

www.sigir.mil

1-10 of 255,000 results - Advanced

ACM SIGIR Special Interest Group on Information Retrieval Home Page
Welcome to the ACM SIGIR Web site. ACM SIGIR addresses issues ranging from theory to
user demands in the application of computers to the acquisition, organization ...
www.sigir.org

home [ACM SIGIR 2010]

ACM-SIGIR 2010 was held at UniMail, Geneva, Switzerland between 19th and 23rd of July
2010. Thanks to all the participants!!! The story continues with ACM-SIGIR 2011.
www.sigir2010.org

Welcome to The 34th Annual ACM SIGIR Conference

Important Dates. 17 Jan 2011 : Abstracts for full research papers due; 24 Jan 2011 : Full
research paper submissions due; 28 Jan 2011 : Workshop proposals due

sigir2011.org

About SIGIR

About SIGIR The Office of the Special Inspector General for Iraq Reconstruction
(SIGIR) is the successor to the Coalition Provisional Authority Office of ...
www.sigir.mil/about/index.html

SIGIR 2008 Archive | SIGIR'0S

The SIGIR 2009 conference ran July 19-23, 2009, in Boston, Massachusetts, at the
Sheraton Boston Hotel and Northeastern University. The conference was chock full of ...
sigir2009.org
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https://www_newcorp.com
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Contact Us Manufacturer
About Us Wireless
Service Plan FAQs Customer Care
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07.15.2011. Les Hinton, Chief Executive Officer of Dow Jones & Company and Publisher ... View All News
Corp. Press Releases >>

WWW.Nnewscorp.com
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Be Part of Something NEW. Founded in 1983, NEW has built a world-class organization dedicated to
providing innovative and comprehensive customer care solutions and delivering ...
https://www_newcorp.com/index.php/careers
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Challenges in Web Site Recommendation

® |nfeasible to ask Web users to explicitly rate Web site

® Not all the traditional methods can be directly applied
to the Web site recommendation task

® (Can only take advantages of implicit user behavior data
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Motivations

® A Web user’s preference can be represented by how
frequently a user visits each site

® Higher visiting frequency on a site means heavy
information needs while lower frequency indicates less

Interests

® User-query issuing frequency data can be used to refine
a user’s preference

Recent Developments in Social and Location Recommendations, Irwin King
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Using Clicks as Ratings

ID Query URL
358  facebook http: //www.facebook.com
358 ITWW http://www.readwriteweb.com
3968  iphone4 http://www.apple.com
3968 ipad http://www.apple.com
Web sites Queries
ViV, V3o vy Vs Vg Iy Iy A3 Iy %5
LU 68 1 15 Lou | 12 5 6
S u, | 42 13 24 S 23 501
S 72 12 112 S 14 35 18
= u, | 15 33 = u, | 25 1 4
Us 85 45 63 Us 12 5 24
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Matrix Factorization

e’
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Probabilistic Factor Model

oy, oy, Py
1. Generate wu;, ~ Gammal(ay, Bx), Vk.
ik jk 2. Generate v, ~ Gammal(ayg, Br), Vk.
f=L...d | k=1...d
w 3. Generate y;; occurrences of item or event 5 from user
© with outcome y;; = 22:1 Wik Vjk -
@ 4. Generate f;; ~ Poisson(y;;).
i=1....m j=1..., n
m d ap —1 / 3
(Ula. B) = Uiy exp(—tin/P) p(U.VIF, e, 8) < p(F|Y)p(Ulex, B)p(V]ex, B)
p (87 — /Bakr(ak)
i=1k=1 k | m
LU,V F) ZZ (o — 1) In(win/Br) — wir/Br)
i=1 k=1
- Yexp(—vjk/Br) n
p(Vie,8) =[] H T () +zz ((ax — 1) In(vs/Br) — vi/Br)
1=1 k=1 Jj=1 k=1
m n fij + Z Z (fi; Inyi; — yi;) + const.
sz eXI) le) i=1 5=1
(V) =]111
=1 5=1
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Probabilistic Factor Model

m
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Collective Probabilistic Factor Model
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Dataset

Anonymous logs of Web sites visited by users who
opted-in to provide data through browser toolbar

URLs of all the Web sites are truncated to the site level

After pruning one month data, we have 65,403 users,
265,367 URLs and 442,598 queries

In user-site frequency matrix 2,612,016 entries, while in
user-query frequency matrix 833,581 entries

Table 2: Statistics of User-Site and User-Query Fre-
quency Matrices

Statistics | User-Site Frequency | User-Query Frequency
Min. Num. 4 10
Max. Num. 9,969 4,693
Avg. Num. 20.33 23.05
Recent Developments in Social and Location Recommendations, Irwin King ,;‘c;ffi
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Performance Comparison

Table 3: Performance Comparison (Dimensionality = 10)

Training Data | Metrics || UserMean | SiteMean SVD PMF NMF GaP PFM | CPFM
NMAE 2.246 1.094 0.488 0.476 0.465 0440 0432 | 0.427
90%, Impro_ve 80.98% 60.96% 12.50% | 10.29% | 8.17% | 2.95% '
I NRMSE 3.522 2.171 0.581 0.570 0.554 | 0.532 0529 | 0.520
Improve 85.24% 76.05% | 10.50% | 8.77% | 6.14% | 2.26% T |
NMAE 2.252 1.096 O.—lQQ 0.478 0.468 ()—l-ll 0434 | 0.428
0% Improve 80.99% 60.95% | 12.65% | 10.46% | 8.55% | 2.95% '
S NRMSE 3.714 2.159 0.584 0.571 0.560 | 0.533 0530 | 0.520
Improve 86.00% 75.91% | 10.96% | 8.93% | 7.14% | 2.44% o |
Recent Developments in Social and Location Recommendations, Irwin King ,-’t;;f}
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|l ocation Recommendations

[Cheng et al, AAAI 2012]
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Check Out on “Check-ins”

Gowalla

g e o 0

will CMHK =

Check In

I Chung Chi College, The NS Ho Sin Hang Engineering

Chinese University of Hong Building {7 #% & T2 9t X1

Kong. Chinese University of Hong
Kong

FEATURED SPOTS

Mellow Johnny's

112 meters south

Juan Pelota Cafe

126 meters south

St. Bernard Sports

355 meters southeast

The Belmont

360 meters east

4th St Tobacco

409 meters southeast

Halcyon

425 meters southeast

TheGnger Man

449 e couthe

You're Checked In Here!

1 PERSON HERE

9 B <
Q/WEIRIT|Y|U|IO]P
n B E B a m u m Jihang Y. says: The common
room 828 has wonderful iMac!
_Jz|x|c|v|B|n|mEC
MAYOR

Facebook Places

Who Whal When And sow whaers

EEEEEXX!
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Location-based Social Networks (LBSNs)

Check ??

iend hink (- \
c « Community detection
2 : L.
* Link prediction
- W,
4 )
N POl recommendation
Checked in * Next place prediction
\. J
Check 1n?
4 )
, | * Travel sequence detection
‘iPOI (lat,Ing) * Trip recommendation
> L e o J
2= A
=
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Related Work

® POl recommendation on GPS trajectory logs

® A collective matrix factorization method is applied on three

matrices: location-activity, location-feature and activity-activity.
[Zheng et al. 201 0a]

® A tensor factorization is conducted on the user-location-
activity relationship. [Zheng et al. 201 0b]

® POl recommendation on LBSNs dataset

® A unified memory-based framework including user similarity,
social and geographical influence, in which geographical
influence in modeled as power-law distribution. [Ye et al. 201 | ]

® Two-center mixture Gaussian model proposed to model
human mobility in LBSNs. [Cho et al. 201 | ]

Recent Developments in Social and Location Recommendations, Irwin King U\:
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Motivations

® Users have their personalized taste for different POls.

Y BERREHEYR

® The check-in probability is
sensitive to geographical P
influence. :

F @
Recent Developments in Social and Location = u,v.-a.§: — '@
CCF ADL 39 on Social Networks and Mining, wef®ogle - = 7 1 Beememmmies b ¢



Observation #l

® Users tend to check-in
around several centers

® (Gaussian distribution to
model check-ins at each
center

® |nverse Distance Rule:
check-in probability is
inversely proportional to
the distance to the
nearest center

Recent Developments in Social and Location Recommendations, Irwin King :
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Observation #2

® Social information can

help improve POI
recommendation, but
seems influence is
limited

® On average, overlap of a
user’s check-ins to his
friends only about 9.6%

0 I .0- ® O~ ‘o‘m:&- ______ e é
® 90% users have only 20% 0 0.2 04 06 08
. Fraction of check-ins visited by a friend
common check-ins
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Our Proposal

® Multi-center Gaussian Model (MGM) to capture
geographical influence

® Propose a generalized fused matrix factorization
framework to include social and geographical influences

® Experiments conducted on large-scale Gowalla dataset

Recent Developments in Social and Location Recommendations, Irwin King ],3:4
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Multi-center Gaussian Model

e Notations

— (,,: multi-center set for user u
— fe,: total frequency at center ¢, for user u
— N(l|pe, , %S¢, ): the pdf of Gaussian distribution, p. and Y. denote

the mean and covariance matrices of regions around center c,,

e The probability a user u visiting a location [ given C,, is defined as:

Cul
_ C Nl pe,, Ee,)
P(I|Cy) = » P(l € Cu)ziec*u S Nl 5

1 T

Which center! Frequency Gaussian distribution
normalization of the center

Cy—1

Recent Developments in Social and Location Recommendations, Irwin King (0%
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Multi-center Discovery Algorithm

® A greedy clustering

0

algorithm is proposed
due to Pareto principle
(top 20 locations cover
about 80% check-ins)

107 10°
Rank num

10 10 10

Recent Developments in Social and Location Recommendations, Irwin King
CCFADL 39 on Social Networks and Mining, August 3-5, 201 3, Beijing, China

St I S L s

for all user i in the user set U do
Rank all check-in locations in | £| according to visiting frequency

VI, € L, set l.center = —1;
Center_list = (); center_no = 0;
fori=1— |L| do
if /;.center == —1 then
center-no++; Center = (); Center.total_freq = 0;
Center.add(/;); Center.total_freq += /;.freq;
forj=i+1— |L| do
if lj.center == —1 and dist(/;, ;) < d then
I;.center = center.no; Center.add(/;);
Center.total_freq += /;.freq;

end if
end for
if Center.total_freq > |u;|.total_freq * 6 then
Center_list.add(Center);
end if
end if

end for
RETURN Center_list for user i;

5]
)

\\

-



Fused Framework

e Probabilistic Matrix Factorization (PMF) models users’ preference on
locations:F' =~ U” L, and the frequency will be converted to [0, 1] by g(z) =

1/(1 + exp(~2)).
e PFM with Social Regularization (PMFSR) [Ma et al. 2011b]:

Ul L]
U%lQ(U,L) — ZZI@(FM—U@TLJ')Q
’ i=1 j=1
U]
+ B> > Sim(i, /)||U; — Us||%
1=1 feF ()

+ M| UF + AL

e MGM models geographical influence

e We can fuse them together:
P, = AP(F,) + (1 — \)P(l|C,), where P(F,;) o< Ul'L;.

Social Geographical
Influence Influence
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Concluding Remarks

Both social and location recommendation play a
significant role in the social web!

Social recommendation extends traditional models and
techniques by using social graphs, ensembles, distrust
relationships, clicks, etc.

Fusing of social behavior information, e.g., media
consumption patters, temporal relationships, etc.

Location recommendation follows a similar path with
new data and features.

Recent Developments in Social and Location Recommendations, Irwin King
CCFADL 39 on Social Networks and Mining, August 3-5, 201 3, Beijing, China .
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Looking for People with Bright lIdeas

® Postdoc

® PhD Students

® Engineers

® Machine learning, social computing, data mining/analytics, Big Data,
etc.

® Semi-supervised learning, on-line learning, active learning, multiple kernel
learning, feature selection, matrix factorization, large margin classifiers,
kernel methods, etc.

® Recommender systems, Q&A, human computation, crowdsourcing, user
profiling, user modeling, graph algorithms, computational advertising, etc.

® Scalable algorithms, mobile apps, cloud computing, open sourced
projects, etc.

Recent Developments in Social and Location Recommendations, Irwin King U‘:;A!
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The ACM Conference Series on
Recommender Systems

HOME RECSYS 2013 PAST CONFERENCES BOOKS WIKI CONTACT

ACM RecSys 2013

The ACM Recommender System conference is the premier international forum for the presentation
of new research results, systems and techniques in the broad field of recommender systems.
Recommendation is a particular form of information filtering, that exploits past behaviours and
user similarities to generate a list of information items that is personally tailored to an end-user’s
preferences. The seventh conference in this series, RecSys 2013, will bring together researchers and
practitioners from academia and industry to present the latest results and identify new trends and
challenges in providing recommendation components in a range of innovative application
contexts. As RecSys brings together the main international research groups working on
recommender systems, along with many of the world’s leading e-commerce companies, in the last
number of years, it has become the most important annual conference for the presentation and
discussion of recommender system research. In addition to the main technical track, RecSys 2013
program will feature keynote and invited talks, tutorials covering state-of-the-artin this domain, a
workshop program, an industrial track and a doctoral symposium.

ACM RECSYS 2013 (HONG KONG)

About the Conference

Registration

Important Dates

Call for Contributions

Program

Keynotes

Tutorials

Recent Developments in Social and Location Recommendations, Irwin King
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CrowdRec 2013

Workshop on Crowdsourcing and Human Computation for Recommender Systems

Co-located with ACM RecSys 2013, Hong Kong, 12th October, 2013

Home Submission Committee

Announcements

2013-07-18
The deadline of submission has been extended to 26th July, 2013.

2013-05-24
CrowdRec 2013 Website launched.

Introduction

We are pleased to announce the first workshop on crowdsourcing and human
computation for recommender systems. The recommender systems we refer to as a
broad spectrum of applications involving recommendation, information valuation,
filtering, summarization, efc. in various contexts from e-commerce to social networking
and mobile applications. This workshop aims to provide a scholarly venue for
researchers and practitioners to exchange the advances of crowdsourcing and human
computation technologies and applications, with an emphasis on the applications in
recommendation systems. The potentials and advantages of crowdsourcing and
human computation have been explored for a number of areas such as computer-
human interaction and information retrieval, we believe that these advances can also
benefit the research of recommender systems at large.

Call For Papers

Programme

Important Dates

26th July, 2013 (PDT)
Submission due (Extended)

16th August, 2013
Author notification

30th August, 2013
Camera-ready version due

12th October, 2013
CrowdRec 2013 Workshop

Contacts

General Inquiries
Kuan-Ta Chen
swc@iis.sinica.edu.tw

Submission

& Programme-related
Albert Au Yeung
albertauyeung@gmail.com

Recent Developments in Social and Location Recommendations, Irwin King
CCFADL 39 on Social Networks and Analysis,August 3-5, 2013, Beijing, China



Overview

Partners

ST

g+

Home

nization

Contact
Program

SOCIAL
NETWORKING

1

In conjunction with the 2013 IEEE International Conference on Big Data (IEEE Big Data 2013)

Workshop on Scalable Machine Learning: Theory and Applications

October 6, 2013, Santa Clara, CA, USA

Big Data are encountered in various areas, including Internet search, social networks, finance, business sectors, meteorology, genomics, connectomics,
complex physics simulations, and biological and environmental research. The huge volume, high velocity, significant variety, and low veracity bring
challenges to current machine leaming techniques. It is desirable to scale up machine leaming techniques for modeling and analyzing the big data from
various domains.

The workshop aims to provide professionals, researchers, and technologists with a single forum where they can discuss and share the state-of-the-art of
scalable machine leaming technologies from theory and applications.

We thank the following experts for accepting our invitation to give plenary talks:

« Mikhail Bilenko, Microsoft research
Carlos Guestrin, University of Washington
Alek Kolcz, Twitter

Alex Smola, Camegie Mellon University

Topics of Interest

Topics of interest include, but not limited to:

« Distributed machine learning architectures
« Data separation and integration techniques
« Machine learning algorithms for GPUs
« Machine learing algorithms for clouds
« Machine leamning algorithms for clusters

Recent Developments in Social and Location Recommendations, Irwin King ‘.‘
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New Book Series

SOCIAL MEDIA &
SOCIAL COMPUTING ©“ALL FOR BOOKS!

he Social Media and Social Computing Series focuses on
publishing high quality references in the rapidly emerging
area of social media and social computing. Both
experimental/practical as well as theoretical investigations are
welcome. The series targets both scholars and practitioners in
__—aw==gocial media and social computing for work in the
intersection of computer science, information technology,
psychology, economics, education and other social sciences.
The advent of the Internet and the Web has resulted in social
interactions and behaviors through the wuse of
" technologies and web services, e.g., hardware devices
such as smart phones, tablets, RFID, etc., software
services such as wikis, blogs, micro-blogs, social
network sites, recommender systems, social bookmarking, social
news, multimedia sharing sites, etc. Analyzing these technologically-

Qx/_}h ~ enabled interactions in their social context will benefit information
ifaccuee providers and information consumers. However, the large volume

and scale of user-generated contents require effective modeling methods
and efficient algorithms to handle these chalenging problems.

Prof. King is Associate Editor of the IEEE Transactions on Neural Networks (TNN) and IEEE
Computational Intelligence Magazine (CIM). He is a senior member of IEEE and a member of
ACM, International Neural Network Society (INNS), and VP & Governing Board Member of the
Asian Pacific Neural Network Assembly (APNNA) . He serves the Neural Network Technical
Committee (NNTC) and the Data Mining Technical Committee under the IEEE Computational

Pleas send Propoesalsite eithierthe Senies Editor
ot Directlyitor:

LEONG Li-Ming

Editor, CRC Press

240 Macpherson Road, #08-01,

Pines Industrial Building,

S’pore 348574

li.ming@tandf.com.sg

Tel: (65) 67415166 x 115

Intelligence Society.

https://www.cse.cuhk.edu.hk/irwin.king/home

kin@cse.cuhk.edu.hk
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’ IRWIN KiInG @ WEB INTELLIGENCE & SociaL CompPuTING LAB
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Trace: » home

You are here: home

NAVIGATION

Irwin King, WISC Lab

"...the truth shall set you free.", Calteck

ABOUT US

Professor, B.Sc. (Caltech), M.Sc., Ph.D. (USC)

« Research Group | Presentations
« News | Newsletter SMIEEE (CIS), MACM, SMINNS (VP, BoG), APNNA (VP,BoG), IrwinKing.com
. Il
. mors Department of Computer Science and Engineering
The Chinese University of Hong Kong, Shatin, NT, Hong Kong
PUBLICATIONS Phone: +(852) 3943 8398; Fax: +(852) 2603 5024
« 1. Conference Papers 2010-Now Email: king [ at ] cse [ dot ] cuhk [ dot ] edu [ dot ] hk
2. Conference Papers 2005-2009
3. Joumal Artidies = Visiting Professor with School of Information (iSchool), UC Berkeley (2011-2012)
4. Books, Edited Books & = AT&T Lbas AT&T Labs Research, San Francisco (2010-2012)
5. ;%.:L:r:%mers « Book Series Editor, Scocial Media and Social Computing, Taylor and Francis (CRC Press)
6. Conference Papers 2000-2004! | = Associate Editor of ACM Transactions on Knowledge Discovery from Data (ACM TKDD)
7. Conference Papers 1994-1999' | » Associate Editor of INNS Natural Intelligence Magazine (INNS NIM)
8. Theses = Associate Editor of IEEE Transactions on Neural Networks (IEEE TNN)
9. Patents = Vice-President of Membership, Board Member, Board of Governors, International Neural Network Society (INNS)
:g' "D—':gggm « Vice-President and Board Member, Asia Pacific Neural Network Assembly (APNNA)
S SR = Chair, Task Force on the Future Directions of Neural Networks (LEEE CIS)
PROFESSIONAL « Chair, SIG and Regional Chapters Committee for Asia and the Pacific (INNS)
ACTIVITIES = Member, CIS Outstanding Chapter Award Subcommittee, (IEEE CIS)
« 1. Professional Achievements = Member of Review Panel of the Natural Science, and Engineering of Academy of Finland
2 Awands and Recognitions = Member of Review Panel of the Natural Sciences and Engineering Research Council of Canada (NSERC)
3. Grants = Member of RGC Engineering Panel, The Hong Kong SAR Government
4. Teaching « Member of Joint Research Scheme (UJRS) Panel under RGC, The Hong Kong SAR Government
5. Ecucation Excellence = Principal Investigator, Chief Technologist, and Co-Founder, The VeriGuide Project, CUHK
6. Demos & Software « Member of the Engineering Faculty Board, The Chinese University of Hong Kong
1. £.nding Expents Demo = Member of the Editorial Board, Web Intelligence and Web Science (WIWS), Higher Education Press, China

II. MEMPM Matlab Toolbox
III. My \Apps
7. Conference Activities =« Special Issue Guest Editor, Twitter and Microblegging Services, ACM Transactions on Intelligent System and Technology

http://www.cse.cuhk.edu.hk/~king
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= Kavli Fellow, Kavli Frontiers of Science Symposium, Kavli Foundation
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CUHK Excellence

® The only university in Hong Kong having Nobel
Laureates as faculty. Four Distinguished Professors-at-

Professor Sir James A.
Mirrlees, Nobel Laureate in
Economic Sciences

Professor Yang Chen-Ning, |
Nobel Laureate in Physics

Professor Yau Shing-Tung,
Fields Medalist

Professor Andrew Yao,
Turing Award Winner

® Nine academicians of Chinese Academy of Sciences
and Chinese Academy of Engineering
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